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Abstract 

It is shown that an analogue of Dirac's equation may be constructed from Milner's 
extension of Maxwetl's equations and a comparison of the algebraic and physical features 
of the equations made. 

In a recent paper, Muraskin (1970) has examined the relationships 
between Dirac's and Maxwell's equations in a tensorial representation. 
Their relationship was studied extensively by the late Professor Milner 
(1936, 1961, 1963), who was especially concerned to adopt a physicist's 
rather than a mathematician's approach. For this reason he worked with 
column-matrices in fiat Euclidean space, and it may be of interest to 
record that recent developments of his theories have led to a particularly 
simple analogue of Dirac's equation in terms of classical electromagnetic 
theory. 

Dirac's equation is, of  course, a factorisation of the Klein-Gordon wave 
equation, which may be written 

D 2 r 1 6 2  (1) 

where [S] 2 is the D'Alembertian and k 2 a constant, and Dirac's first-order 
equation may be written (Richards, 1959). 

where 

fl 
i ~ / +  ia. c div0a - n ~ mo c 2 = 0 (2) 

~ j  + ~ j ~  = 28~j  ( ~ o = f l ; i , j = O ,  1,2,3) 

Starting from an energy-stress tensor composed of  the elements of  the 
column-matrices e and h, where e = (e ,  e~, ex, e~) and h = (h ,  h~,hr, hz), 
and using the equation 

at Z,k = 0 (3) 

where Z is the energy-stress tensor, Milner (1961, 1963) obtains the equation 

-OR-1(e + ih) = r + is (4) 
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This has been written in Milner's notation for ease of  reference, but for 
our present purposes it is only necessary to observe that the operator 
0R -~ represents quaternionic differentiation. 

Equation (4) when written out in full becomes 

10ht~ 

l / - ~ - c u r l h + r + g r a d e t  - [ - = - + c u r l e + s + g r a d h  = 0  (5) 
\ c  at  

Rearranging, introducing the electric and magnetic charge and current 
densities and taking resolutes, leads to 

1 0et 
d i v e = j t = r t  e Ot 

10e 
e Ot 

1 Oh 

- - -  -- curl h = - j  = r - grad et 

div h = kt = s~ 1 Oh t 
c 0t 

) 0-t- + curl e = - k = s - grad ht 

Taking the first equality in each equation gives the set of  Maxwell's 
equations. The second equalities show that in Milner's theory the charge 
and current densities are composed of  two quantities, one of which only 
is the source term. I t  is this fact that leads to the analogue with Dirac's  
equation. 

Milner (1961, 1963) argued for the additional relations 

r = Kh and s = Ke (7) 

where K is a constant. 
However, as Kilmister (1963) pointed out, K is really a four-vector, 

and the writer has substituted the relation 

where 

r = ~/Kh 

1 

(6a) 

(6b) 

(6c) 

(6d) 

- 1  
- 1  

- 1  

which effectively substitutes Kht for rt, - r h  for r, ~:et for s t and -~:e for s 
in equations (5) and (6). 

I t  is then easily demonstrated that all components of  (5) and (6) obey 
a wave equation of  the form 

[]2 X = -K2 X (9) 

and s = ~Ke (8) 
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This wave equation differs from the Klein-Gordon equation in the signature 
of  the source term. Furthermore, this difference cannot be removed by 
making x complex (Milner, 1961, 1963). 

Physically, it is apparent that the two equations are essentially different, 
in that in the Klein-Gordon equation the wave velocity is greater, and in 
Milner's less, than the velocity of light c. 

Returning now to equations (5) and (6) it may be noted that whereas 
the terms on the right-hand side and in the middle are invariant whether 
the motion is wave motion or not, the terms on the right-hand side inter- 
change between (a) and (c) and (b) and (d). Thus the appropriate first-order 
equation in ht that will result from substitution of a solution of the 
form Aexp [i(Kl vt -/r X)] will be 

i %  + iedivh - ~ceht = 0 (10) 
O l  

The second order wave equation in ht is 

1 a 2 ht 
V 2 ht c 2 0 t  2 t- tr 2 ht = 0 (11) 

Substituting for ht we have 
V 2 

_ K 1 2 + ~ 2  +~c2=0 
1 C 2 (12) 

o r  

/~12 

Now, Milner shows that the rest energy of  a spherical charge system is 
proportional to x, so (13) accords with the equation 

m 0  
m = [ l _ t  / )JzvZ'c2~l/2 (14) 

If  we quantise by taking the total energy to be hco = hK 1 c = me  2, we have 

m0 c (15) to= h 

Substituting in (10) we have 

i aht + i c d i v h - h m o c 2 h t  = 0 
~7~ 

(16) 

It may now be seen that (16) and (2) differ algebraically by the presence 
of  the factor ~ in the latter. Physically, of  course, ht is an actual charge 
density (in Milner's, not Maxwell's, system) whereas r is a probability 
function. 
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